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We investigate the use of adaptive mesh refinement in the simulation of laser
plasma filamentation. A numerical algorithm is constructed to solve model equations
consisting of a fluid approximation of a quasineutral plasma combined with a paraxial
light propagation model. The algorithm involves high-resolution plasma and light
model discretizations on a block-structured, locally refined grid hierarchy, which
is dynamically modified during the time integration to follow evolving fine-scale
solution features. Comparisons of the efficiency of this approach to that of uniform
grid calculations are presented. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In this paper, we investigate the use of adaptive mesh refinement (AMR) in the simu-
lation of laser plasma interaction (LPI). The motivating physical context is that of inertial
confinement fusion experiments, in which laser beams are used to drive the implosion of
a fuel capsule with the goal of igniting a self-sustained reaction [29]. In such experiments,
the rapid ionization of the capsule and surrounding materials generates a dynamic, plasma-
filled region through which the laser pulse must continue to propagate without substantial
perturbation to achieve the desired distribution of energy at the target. The ability to predict
and control LPI is therefore critical in the design of laser-driven fusion experiments. In
recent years, computational models have become an increasingly important complement
to theoretical analysis and experimentation in LPI research [4, 5, 22]. The goal of this
paper is to consider the application of AMR techniques to increasing the efficiency of LPI
simulations and the range of problems that can be numerically addressed.

1 This work was performed under the auspices of the U.S. Department of Energy by the University of California,
Lawrence Livermore National Laboratory, under Contract W-7405-Eng-48.
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A variety of LPI mechanisms exist. In this paper, we consider filamentation instabilities,
which are initiated by the refraction of laser light into regions of low relative plasma
density. The resulting localized increase in laser intensity causes a decrease in density
through heating and/or ponderomotive forces, further increasing the refraction of light.
This instability is eventually limited by diffraction, by heating, or in extreme cases by
expulsion of all plasma, but potentially not before the transport of laser energy is significantly
altered. Moreover, filamentation interacts with other LPI processes, in particular parametric
instabilities, which grow fastest in filaments.

A major challenge of simulating filamentation in actual ignition-scale experimental con-
figurations is the need to accommodate a wide range of physical scales. The “speckles” from
which filaments form represent a fine scale requiring mesh cells on the order of a light wave-
length. It is known [4] that the speckle dimensions are approximately f λ transverse to the
light propagation direction and 8 f 2λ along the propagation axis, where f is the f -number of
the focusing lens (e.g., f = 8) and λ is the light wavelength. In contrast, the diameter of
the beams in which filamentation occurs can be much larger. For example, a section of a
single beam of the 192-beam laser system being constructed at the National Ignition Facil-
ity (NIF) [20] at Lawrence Livermore National Laboratory will span approximately 2000
wavelengths of 351-nm light. Modeling a full NIF beam with a mesh sufficiently small to
resolve filament speckles therefore represents a formidable computational problem.

This situation motivates our investigation of AMR to apply computational resources
where they are most needed, e.g., to resolve speckles, while using coarser grids in other
parts of the simulation region that do not require such high resolution. The gains to be
expected from such an approach are problem dependent; AMR is not a technique that
should be applied in every circumstance. Local grid refinement is effective when capturing
isolated regions of rapid variation, but it is less appropriate when the computational domain
is dominated by rapidly varying structures. So if the goal is to resolve a few isolated
speckles in a large beam, a significant efficiency increase can be realized from local mesh
refinement. On the other hand, if a large portion of the beam is highly filamented, the utility
of local refinement within the beam is limited. This can occur, for example, when beam
smoothing techniques are used to modify the beam so as to avoid the formation of a few
large, catastrophic filaments at the cost of generating many smaller, though more benign,
ones. Even in such cases, however, AMR can help expand the simulation region by enabling
the use of coarser resolution outside the beam. Simulation of the interaction of multiple
beams can also be facilitated by the ability to use coarser meshes in the regions separating
the beams.

Since our interest here is in the application of AMR to filamentation problems, not in
the development or evaluation of models of the physical processes, we adopt with one
modification a mathematical model developed in [4, 22] that we feel is sufficient to demon-
strate the advantages of the AMR methodology. This mathematical description combines
a two-fluid model of the plasma with a paraxial model of laser light propagation suit-
able for ponderomotively driven filamentation. We depart from this model by neglecting
electron heat flow because of unresolved issues in the modeling of this nonlocal transport
effect.

As in [22], we assume quasineutrality of the plasma, which results in a system of equations
for conservation of mass, momentum, and energy similar to those for a neutral, ideal gas.
These equations are augmented by source terms representing the ponderomotive force
exerted by the light field on the plasma. Such a model describes behavior on timescales
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much slower than the laser frequency, e.g., on the relatively slow ion acoustic timescale.
AMR provides the capability to resolve the scales on which the source terms act, so these
sources are treated explicitly in an operator split integration with a high-resolution upwind
discretization used to advance the fluid equations.

The light propagation model from [4, 22] is obtained from Maxwell’s equations using a
variety of assumptions. In particular, the assumption of fixed polarization, time-harmonic
waves yields a reduction to a Helmholtz equation for the light field in the usual manner. The
difficulties encountered in solving Helmholtz equations with variable refractive index in
computational domains thousands of wavelengths in diameter motivate the use of paraxial
approximations, which assume that the light propagates primarily in an a priori known
direction and does not scatter at large angles. This allows much of the high-frequency
oscillation in the light field to be removed by introducing an appropriate envelope, which is
computed by a sweep of the computational domain in the light propagation direction starting
from a prescribed incident field on the boundary. On uniform grids, an efficient method to
integrate the resulting paraxial equation involves the use of fast Fourier transforms (FFTs) to
diagonalize a certain differential operator transverse to the propagation direction [11]. Since
the use of FFTs on locally refined grids is problematic, we consider here a discretization
based on finite differences, where the transverse differential operator is inverted by a linear
system solve.

To introduce local mesh refinement into the solution of the coupled plasma and light
systems, we employ a Cartesian, block-structured strategy. In this approach, the computa-
tional domain consists of a hierarchy of refinement levels. Each refinement level is a disjoint
union of rectangular grids obtained by refining a subregion of the next coarser level by a
fixed ratio in each coordinate direction. The location and number of refinement levels can
be dynamically modified during the calculation to follow evolving solution features. The
integration of the laser plasma system on the locally refined hierarchy is accomplished by
a coordinated integration of the plasma and light systems on individual refinement levels,
combined with synchronization steps to enforce the mathematically required compatibility
conditions across levels. This type of approach has been employed to solve general hyper-
bolic systems [3], as well as problems in computational fluid dynamics [1, 2], combustion
[19], solid mechanics [13, 25], and plasma processing [7, 8]. The new wrinkle in the cur-
rent context is the use of this approach to solve the plasma fluid model combined with the
paraxial light propagation algorithm.

In Section 2, we describe the laser plasma filamentation model. The numerical discretiza-
tion and solution of the coupled system on a uniform grid is presented in Section 3. The
algorithm is generalized to locally refined grids in Section 4, and numerical results are
presented in Section 5. Section 6 contains some conclusions and identifies areas for further
investigation.

2. LASER PLASMA FILAMENTATION MODEL

Our plasma model is derived from the Poisson–Euler equations, which consist of Euler
equations for the evolution of mass, momentum, and energy of both the ions and the electrons
coupled by Poisson’s equation for the electric potential. We augment this system with a
source term representing the ponderomotive force exerted on the plasma by the ambient
laser light field. Let nα , uα , pα , Tα , and mα represent the number density, velocity, pressure,
temperature, and mass of the ions (α = i) and electrons (α = e), respectively. Let e denote
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the electron charge magnitude, Z the ionization state, and ε0 the permittivity of free space.
The Poisson–Euler equations are expressed as

∂t ni + ∇ · (ni ui ) = 0, (1)

∂t (mi ni ui ) + ∇ · (mi ni ui ⊗ ui ) + ∇ pi = −Zeni∇φ, (2)

(γ − 1)−1[∂t pi + ∇ · (pi ui )] + pi∇ · ui = 0 (3)

for the ions,

∂t ne + ∇ · (neue) = 0, (4)

∂t (meneue) + ∇ · (meneue ⊗ ue) + ∇ pe = ene∇φ + Fp, (5)

(γ − 1)−1[∂t pe + ∇ · (peue)] + pe∇ · ue = 0 (6)

for the electrons, and

ε0�φ = e (ne − Zni ) (7)

for the potential φ. We have implicitly assumed here that both the ions and the electrons
may be treated as ideal gases with the same ratio of specific heats γ . The source term
Fp represents the ponderomotive force exerted by the laser light on the plasma (see, e.g.,
Section 2.8 of [18]), given by

Fp ≡ −ε0ω
2
p

2ω2
∇|E |2, (8)

where E and ω are the light field and frequency, respectively, and

ωp ≡
(

e2ne

ε0me

)1/2

(9)

is the plasma frequency. The model from which E is obtained is described below.
The Euler–Poisson system can be simplified by the assumption of quasineutrality, which

holds in many filamentation problems of interest. Under appropriate nondimensionalization,
Eq. (7) becomes

λ2
D∇2φ̂ = Zn̂i − n̂e, (10)

where the hats denote dimensionless quantities and λD is proportional to the plasma Debye
length. When the spatial variation of the potential is large compared to the Debye length
(λD → 0), Eq. (10) reduces to Zn̂i ≈ n̂e, the quasineutral approximation. In this limit, we
may define a single fluid density n ≡ ni = ne/Z and, further restricting our interest to low-
frequency scales, a single fluid velocity u ≡ ui = ue (see [14]). These assumptions imply
that (1) and (4) reduce to the same equation and furthermore, adding (2) and (5), we obtain
a new conservation of momentum equation with a total mass defined by m ≡ mi + Zme.
Replacing the ion pressure equation (3) by its sum with the electron pressure equation (6),
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we obtain the system

∂t n + ∇ · (nu) = 0, (11)

∂t (mnu) + ∇ · (mnu ⊗ u) + ∇ p = Fp, (12)

(γ − 1)−1[∂t p + ∇ · (pu)] + p∇ · u = 0, (13)

(γ − 1)−1[∂t pe + ∇ · (peu)] + pe∇ · u = 0, (14)

involving the total pressure p ≡ pi + pe.
The ideal gas constitutive laws for electrons and ions are pi = ni kTi and pe = nekTe,

where k is the Boltzmann constant. The definition of total pressure provides a total con-
stitutive relation p = nkT which defines a total temperature T = Ti + Z Te and a specific
internal energy ε ≡ p/(nm(γ − 1)). By replacing the pressure p with the total energy
nm(|u|2/2 + ε), Eqs. (11)–(13) can be placed in divergence form,

∂t n + ∇ · (nu) = 0, (15)

∂t (mnu) + ∇ · (mnu ⊗ u) + ∇ p = Fp, (16)

∂t

[
nm

(
1

2
|u|2 + ε

)]
+ ∇ ·

[
nmu

(
1

2
|u|2 + ε

)
+ pu

]
= u · Fp, (17)

and

(γ − 1)−1[∂t pe + ∇ · (peu)] + pe∇ · u = 0. (18)

Except for the ponderomotive source term Fp, which is defined in (8), the equations (15)–
(17) are the standard Euler equations of gas dynamics (in terms of the number density n
instead of the usual mass density ρ = mn).

The full system (15)–(18) expresses the conservation of total mass, momentum, and
energy. In this formulation, the electron pressure equation (18) is only required in order to
determine the partitioning of energy between the ions and electrons. If this partitioning is
for some reason not needed, then (15)–(17) is sufficient to describe the total plasma motion,
which is identical to an ordinary neutral fluid under the influence of a body force.

The electric field E in (8) is obtained as the solution of Maxwell’s equations in a plasma
(e.g., Section 7.6 of [18]). Assuming that ∇ · E is small enough to be neglected [4], E is
determined by solving the wave equation

−
(

∂2

∂t2
− c2∇2

)
E = ω2

pE, (19)

where c is the speed of light in a vacuum. The light field E therefore influences the plasma
evolution through the ponderomotive force (8) while the plasma couples to the light prop-
agation through the presence of the electron density in the plasma frequency (9).

We assume that the light field E satisfying (19) has a fixed polarization P and is time-
harmonic at the light frequency ω; i.e.,

E = P Re Ee−iωt , (20)
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where E is a complex-valued envelope. Substitution of (20) into (19) yields the Helmholtz
equation

(∇2 + k2η2) E = 0, (21)

where k ≡ ω/c is the free space wave number, and

η ≡
(

1 − ω2
p

ω2

)1/2

(22)

is the refractive index. In this paper, η is real-valued, since we consider only underdense
plasmas, i.e., plasmas for which ne < nc where nc ≡ ω2ε0me/e2 is the critical density at
which the plasma frequency equals the light frequency.

The Helmholtz equation (21) requires boundary conditions to obtain a well-posed prob-
lem. In the context of acoustic wave scattering by a dielectric medium, a standard approach
is to consider the amplitude E to be the sum of a prescribed unperturbed incident wave
and a scattered wave, with a Sommerfeld radiation boundary condition enforced on the
scattered wave [9]. To obtain a numerical discretization, it is necessary to replace the
Sommerfeld condition by a condition on the boundary of the finite computational domain.
The computational domain boundary must be far enough away from the laser–plasma re-
gion of interest to avoid numerical reflections from the approximated far-field boundary
conditions. Unfortunately, in the context of ignition-scale inertial confinement fusion prob-
lems, the laser–plasma interaction “region of interest” is already large, spanning thousands
of wavelengths. The solution of such large systems is not feasible, especially in the context
of a time-dependent simulation where the Helmholtz equation must be solved repeatedly
as the plasma evolves.

These difficulties motivate the use of paraxial approximations in the solution of large
laser–plasma interaction problems. Paraxial approximations assume that the laser light
propagates primarily in one direction and does not scatter too far from the propagation axis.
These assumptions lead to discrete algorithms that involve a sweep of the computational
domain in the propagation direction, starting with incident beam boundary conditions. If
periodic boundary conditions are employed in the coordinate directions transverse to the
light propagation axis, the need to employ a larger computational domain to enforce far-field
boundary conditions is avoided (although larger domains might still be needed to avoid the
periodic aliasing of solutions). Another major advantage of paraxial approximations is the
opportunity to envelope solutions by factoring out the most highly oscillatory components
that would otherwise have to be resolved by the numerical discretization. The obvious
downside to paraxial approximations is their limitation to physical problems for which the
assumptions are valid, e.g., problems with negligible backscatter.

There are several ways to derive paraxial approximations. Here, we follow the devel-
opment of [11]. Assume that the light is propagating in the positive x ≡ x1 direction. We
formally write (21) as

(P2 + Q2) E = 0, (23)

where

P ≡ ∂x , (24)

Q ≡ (∇2
⊥ + k2η2)1/2, (25)
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and ∇2
⊥ denotes the Laplacian with respect to the coordinates x⊥ transverse to x (x⊥ ≡ x2 in

two dimensions and x⊥ ≡ (x2, x3) in three dimensions). Assuming that P and Q commute,
(23) factors as

(P + i Q)(P − i Q) E = 0. (26)

We now drop the first factor on the left-hand side, eliminating backward propagating waves.
Note that the commutativity assumption on P and Q implies that the refractive index η has
small x variation, which is consistent with the assumption of negligible backscatter.

An algebraic manipulation verifies that

Q = (Q + kη)−1∇2
⊥ + kη + k(Q + kη)−1(ηQ − Qη). (27)

If we now assume that η also varies sufficiently slowly in the transverse directions so that it
approximately commutes with Q, we may then drop the last term in (27). As suggested in
[11], we replace η in the first term of (27) by a reference value η0 that is solely a function
of x (e.g., the transverse average of η). The resulting expression can then be solved for the
approximate Q as

Q ≈ (∇2
⊥ + k2η2

0

)1/2 + k(η − η0). (28)

Although this expression for Q is the basis for the paraxial algorithm described in [11],
the more traditional paraxial approximation is obtained by further assuming that ∇2

⊥ is
dominated by k2η2

0, so that the square root term in (28) can be linearized to obtain

Q ≈ 1

2kη0
∇2

⊥ + kη. (29)

The paraxial solution is therefore the result of integrating

∂x E = i

2kη0
∇2

⊥E + ikηE . (30)

To reduce the magnitude of the phase variation resulting from the last term of (30), we take
the opportunity to introduce an integrating factor. Specifically, let

E ≡ Ẽ exp

(
ik

∫ x

x0

η0(x ′) dx ′
)

. (31)

Substitution in (30) yields an equation for the envelope Ẽ :

∂x Ẽ = i

2kη0
∇2

⊥ Ẽ + ik(η − η0)Ẽ . (32)

The ponderomotive force (8) needed for the integration of (15)–(17) can be computed
directly from the solution of (32), which has the same modulus as the light field E .
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3. UNIFORM GRID ALGORITHM

We employ the method of fractional steps to numerically integrate the system (8), (9),
(15)–(18), (19) on a uniform computational grid. Assume that the solution is known at a
time t0, and we wish to compute it at time t0 + �t . The numerical algorithm that performs
this update consists of four main steps:

1. Compute the ponderomotive term (8) using values for the plasma and light field at
time t0.

2. Integrate Eqs. (15)–(17) to time t0 + �t .
3. Use the update density as well as some flux quantities computed in Step 2 to integrate

(18) to time t0 + �t .
4. Use the updated density to define a new plasma frequency (9), and then solve (19) for

the new light field at time t0 + �t .

In the remainder of this section, we describe the above steps in more detail.

3.1. Plasma Model Discretization

We use an explicit, high-resolution Godunov scheme to discretize (15)–(17). The appli-
cation of such algorithms to the solution of systems of hyperbolic conservation laws is well
known, especially in the case of the Euler equations of gas dynamics. The main issue in the
current context is the inclusion of source terms, which also affects the approach selected
to account for multidimensional effects. We therefore describe these aspects in more detail
for the two-dimensional case. The algorithm discussed in this section can be generalized
to three spatial dimensions in a straightforward manner. The only essential difference is
the formulation of the characteristic tracing and the transverse correction steps, which are
extended using the approach of either [6] or [23].

Letting U ≡ (mn, mnu, mn( 1
2 |u|2 + ε))T , the system (15)–(17) can be written in vector

form,

∂tU + ∇ · F(U ) = G(U, E). (33)

To simplify notation, assume two spatial dimensions. Let U n
i, j represent the elementwise

average of U in the cell [i�x1, (i + 1)�x1] × [ j�x2, ( j + 1)�x2] at time tn = n�t . When
the source G lagged in time and its cell-averaged value is denoted by Gn

i, j , the U n
i, j are

updated by the conservative difference formula

U n+1
i, j = U n

i, j − �t

�x1

[
F1

(
U n+1/2

i+1/2, j

) − F1
(
U n+1/2

i−1/2, j

)]
− �t

�x2

[
F2
(
U n+1/2

i, j+1/2

) − F2
(
U n+1/2

i, j−1/2

)] + �tGn
i, j , (34)

where the values U n+1/2
i±1/2, j and U n+1/2

i, j±1/2 denote “flux” states at the cell faces at an intermediate
time t = tn + �t/2. These values are obtained from solutions of Riemann problems with
initial (“left” and “right”) states at the respective faces. See Fig. 1.

Our approach to calculation of the initial states is based on a donor cell upwind scheme
[6, 24, 26]. The left and right states used to calculate the flux states U n+1/2

i+1/2, j , U n+1/2
i, j+1/2 are

obtained via characteristic tracing with corrections that account for the source term and for
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i, j
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t

FIG. 1. States associated with the grid.

the flows transverse to the flux direction. For reasons explained below, these calculations
are performed on the conserved variables U but using the so-called “flux” or “primitive”
variables V = (mn, u, p); in terms of the latter, (33) is

∂t V + W −1∇ · F̃(V ) = G̃(V, E), (35)

where dU = W dV , F̃(V ) = F(U ), and G̃(V, E) = W −1G(U, E).
We describe the calculation of the initial states on cell faces orthogonal to the x1 axis; an

analogous calculation is valid for the other axis. The calculation of the left state V n+1/2,L
i+1/2, j

and the right state V n+1/2,R
i+1/2, j is based on a Taylor expansion of V , where Eq. (35) is used to

eliminate time derivatives in favor of spatial derivatives:

V

(
xi ± �x1

2
, x j , tn + �t

2

)
≈ V n

i, j ± �x1

2

(
∂x1 V

)n

i, j
+ �t

2
(∂t V )n

i, j

= V n
i, j ± �x1

2

(
∂x1 V

)n

i, j
− �t

2
(W −1∇ · F̃)n

i, j + �t

2
G̃n

i, j .

(36)

This calculation is performed in two steps in a “predictor–corrector” fashion. First, we
predict values V̂ n+1/2,L

i+1/2, j and V̂ n+1/2,R
i+1/2, j in a purely one-dimensional fashion by assuming

no transverse variation; dropping from (36) the transverse derivatives (i.e., ∂x2 F̃2), one
has

V̂ n+1/2,L
i+1/2, j ≡ V n

i, j + �x1

2

(
∂x1 V

)n

i, j
− �t

2

(
W −1∂x1 F̃1

)n

i, j
+ �t

2
G̃n

i, j , (37)

V̂ n+1/2,R
i+1/2, j ≡ V n

i+1, j − �x1

2

(
∂x1 V

)n

i+1, j
− �t

2

(
W −1∂x1 F̃1

)n

i+1, j
+ �t

2
G̃n

i+1, j . (38)

In this form, derivatives of the flux vector F̃1 and the primitive state vector V must both
be approximated. By assuming continuous solutions, we can further simplify this predictor
step by allowing the flux gradient to be written in quasilinear form. All spatial derivatives
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are then expressed in terms of the state vector V ,

V̂ n+1/2,L
i+1/2, j ≡ V n

i, j + 1

2

(
I − ( Ã1)

n
i, j

�t

�x1

)
�x1

(
∂x1 V

)
i, j

+ �t

2
G̃n

i, j , (39)

V̂ n+1/2,R
i+1/2, j ≡ V n

i+1, j − 1

2

(
I + ( Ã1)

n
i+1, j

�t

�x1

)
�x1

(
∂x1 V

)
i+1, j

+ �t

2
G̃n

i+1, j , (40)

where Ã1 = W −1(d F̃1/dV ). In a second step (Section 3.1.2), multidimensional effects are
included when the left and right states are corrected by reintroducing the approximations
of transverse derivatives.

3.1.1. One-Dimensional Predictor, Characteristic Tracing

Calculation of the predicted states (39), (40) is performed using characteristic tracing. We
approximate the value of the derivative (∂x1 V )i, j using a local-slope-limiting algorithm that
provides second-order accuracy away from extrema and steep gradients while preventing
spurious numerical oscillations near rapid spatial transitions [27]. Write

�x1
(
∂x1 V

)n

i, j
= �V n

i, j ≈ dminmod
(
V n

i+1, j − V n
i, j , V n

i, j − V n
i−1, j

)
, (41)

where the double minmod function is defined by

dminmod(a, b) ≡ sgn(a) + sgn(b)

2
min

(
2|a|, 2|b|, |a + b|

2

)
(42)

and the operations are performed componentwise. Slope limiting is done on primitive vari-
ables so as to restrict directly nonphysical undershoots in the physically positive quantities
mn and p.

Next, we spectrally decompose the middle term in (39), (40). Let X1 denote a ma-
trix whose columns Rk consist of right eigenvectors of Ã1 (i.e., X1 Ã1 = diag(λ1, λ2,

λ3, λ4)X1 = �X1). We then have �V = X1(αk) = ∑
αk Rk , where (αk) = X−1

1 �V . Hence,

(
I − Ã1

�t

�x1

)
�V =

(
I − Ã1

�t

�x1

)∑
k

αk Rk,

=
∑

k

(
I − λk

�t

�x1

)
αk Rk . (43)

In the computation of (39), (40), we include only those terms in the sum (43) corresponding
to waves that propagate toward the corresponding cell faces: positive eigenvalues λk for
V̂ n+1/2,L

i+1/2, j and negative values for V̂ n+1/2,R
i−1/2, j . We write

V̂ n+1/2,L
i+1/2, j ≡ V n

i, j + 1

2

[∑
λ>0

(
I − λk

�t

�x1

)
αk Rk

]n

i, j

+ �t

2
G̃n

i, j , (44)

V̂ n+1/2,R
i+1/2, j ≡ V n

i+1, j − 1

2

[∑
λ<0

(
I + λk

�t

�x1

)
αk Rk

]n

i+1, j

+ �t

2
G̃n

i+1, j . (45)
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3.1.2. Transverse Correction

We now use these predicted left and right states to compute a predicted value of V at
the cell face from the solution to a Riemann initial value problem, V̂ n+1/2

i+1/2, j = RP(V̂ n+1/2,L
i+1/2, j ,

V̂ n+1/2,R
i+1/2, j ). To restore the transverse flux terms that were omitted in Eqs. (37), (38), first we

approximate the derivative term in W −1∂x2 F̃2(V ) by a centered difference evaluated with
the predicted interface values V̂ n+1/2

i, j±1/2. This gives corrected left and right interface states

V n+1/2,L
i+1/2, j and V n+1/2,R

i+1/2, j as follows:

V n+1/2,L
i+1/2, j ≡ V̂ n+1/2,L

i+1/2, j − �t

2
(W −1)n

i, j

F̃2
(
V̂ n+1/2

i, j+1/2

) − F̃2
(
V̂ n+1/2

i, j−1/2

)
�x2

, (46)

V n+1/2,R
i+1/2, j ≡ V̂ n+1/2,R

i+1/2, j − �t

2
(W −1)n

i+1, j

F̃2
(
V̂ n+1/2

i+1, j+1/2

) − F̃2
(
V̂ n+1/2

i+1, j−1/2

)
�x2

. (47)

The final states at the cell faces, which are used to compute the time-average interface
fluxes, are obtained by again solving Riemann problems but now with the corrected left and
right states as initial data: V n+1/2

i+1/2, j = RP(V n+1/2,L
i+1/2, j , V n+1/2,R

i+1/2, j ).

3.1.3. Electron Pressure

The last step in the integration of the plasma equations is to update the electron pressure
pe, for which we use a simple upwind scheme. Replacing pe by ZnkTe in (18) and dividing
by k Z , we have an equivalent equation for the temperature Te,

∂t (nTe) + γ∇ · (nTeu) − (γ − 1)u · ∇(nTe) = 0, (48)

which we discretize as

(Te)
n+1
i, j = 1

nn+1
i, j

{
nn

i, j (Te)
n
i, j − �t

[
γ

(
(Te)

n+1/2
i+1/2, j (nu1)

n+1/2
i+1/2, j − (Te)

n+1/2
i−1/2, j (nu1)

n+1/2
i−1/2, j

�x1

+ (Te)
n+1/2
i, j+1/2(nu2)

n+1/2
i, j+1/2 − (Te)

n+1/2
i, j−1/2(nu2)

n+1/2
i, j−1/2

�x2

)

+ (γ − 1)

(
(u1)

n
i, j

(Te)
n+1/2
i+1/2, j n

n+1/2
i+1/2, j − (Te)

n+1/2
i−1/2, j n

n+1/2
i−1/2, j

�x1

+ (u2)
n
i, j

(Te)
n+1/2
i, j+1/2nn+1/2

i, j+1/2 − (Te)
n+1/2
i, j−1/2nn+1/2

i, j−1/2

�x2

)]}
. (49)

The terms (nu1)
n+1/2
i−1/2, j and (nu2)

n+1/2
i, j−1/2 are flux terms in (15) and therefore have been

previously calculated. Similarly, during the calculation of these flux terms, we also keep
nn+1/2

i−1/2, j and nn+1/2
i, j−1/2. The only values still unknown in (49) are the values of Te at the cell

faces, e.g., (Te)
n+1/2
i−1/2, j . These are computed from cell-centered values (Te)i, j in an upwind

fashion.
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3.2. Paraxial Light Model Discretization

To discretize (32), consider a uniform grid with cells of size �x × �x⊥ indexed by
( j, m), 1 ≤ j ≤ N , 1 ≤ m ≤ N⊥. Let E j−1/2,m and E j+1/2,m denote the value of Ẽ at the
center of the left and right x-faces of cell ( j, m), respectively, and let η j,m denote the value
of the refractive index (22) at the cell center. Define the transverse η average

η0
j ≡ 1

N⊥

N⊥∑
m=1

η j,m . (50)

We discretize (32) as

E j+1/2,m − E j−1/2,m

�x
= i

4kη0
j�x2

⊥

[(
E j−1/2,m−1 + E j+1/2,m−1

) − 2
(

E j−1/2,m + E j+1/2,m
)

+ (
E j−1/2,m+1 + E j+1/2,m+1

)] + ik
(
η j,m − η0

j

)
2

× (
E j−1/2,m + E j+1/2,m

)
. (51)

Here, we have applied the standard central differencing of the transverse Laplacian ∇2
⊥.

This implicit discretization in the x direction is similar to a Crank–Nicholson scheme,
except for the centering of the coefficients at the step midpoint. The coefficient centering
in (51) ensures that energy is algebraically conserved by the algorithm, as can be verified
by a spectral analysis (see, e.g., the discussion surrounding (85) in Section 4). The light
propagation algorithm can be described in a more compact notation as follows: Given an
incident complex amplitude E1/2,m, 1 ≤ m ≤ N⊥, compute for j = 1, . . . , N




E j+1/2,1
...

E j+1/2,N⊥


 = A−1

j A∗
j




E j−1/2,1
...

E j−1/2,N⊥


 , (52)

where A j is the N⊥ × N⊥ matrix defined by

A j ≡ D j − β j∇2
N⊥ , (53)

where

β j ≡ i

4kη0
j

, (54)

D j is the diagonal matrix with entries defined by

(D j )m,m ′ ≡
{

1
�x − ik

2

(
η j,m − η0

j

)
, if m = m ′,

0, otherwise,
(55)

and ∇2
N⊥ denotes the matrix corresponding to the central differencing of ∇2

⊥. The ∗ super-
scripts denote complex conjugation. To obtain the amplitudes by “sweeping” the computa-
tional grid starting from known boundary values, we therefore solve a linear system with
matrix A j at every �x step.
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4. LOCALLY REFINED MESH ALGORITHM

The algorithm described in the previous section can be generalized to accommodate local
mesh refinement. To do so, we adopt a block-structured refinement approach in the style
of [2, 3] in which the computational domain is viewed as a nested hierarchy of refinement
levels, indexed from coarsest to finest by � = 0, 1, . . . , �max. Each refinement level is a
disjoint union of rectangular grids. On level 0, the coarsest level, this union comprises a
uniform meshing of the entire physical domain. The rectangular grids on a given level � > 0
are obtained by refining rectangular patches of grid cells on the � − 1 refinement level by
the same ratio r�. The ratio r� can be generalized to a vector whose components are the
refinement ratios in each coordinate dimension. Note that this prescription implies that no
cell is partially refined. It is also required that each refinement level by properly contained
in the next coarser level, except perhaps at the domain boundary.

A time integration algorithm on a locally refined grid hierarchy is made adaptive by
allowing the location and number of refinement levels to change as the computed solution
evolves. Using the general approach of [2], individual mesh cells are “tagged” for refinement
based on some criterion; then new rectangular grids are generated that contain the tagged
cells. The selection of the refinement criteria is an important issue and is often problem-
dependent [13]. The main focus of the work in this paper is the AMR integration algorithm,
not the selection of the best refinement criteria. Some comments on refinement criteria are
made in Section 4.2.

The integration of the plasma and the light equations on a locally refined grid hierarchy
such as that described above is accomplished by the integration of the coupled system on
individual refinement levels combined with synchronization steps to ensure consistency
across levels. The algorithm can be applied recursively on hierarchies with an arbitrary
number of refinement levels. We therefore outline the algorithm for the case of two levels
(Fig. 2a), where the refinement ratio between the fine and coarse levels is r . The main steps
are as follows:

1. Choose a time step �tc satisfying a Courant-Friedrichs-Lewy (CFL) stability criterion
based on the coarse-level mesh size. Using source terms evaluated at the current time,
integrate the plasma model over �tc. Using the new plasma density thereby obtained, sweep
the light algorithm over the coarse level starting from either physical boundary conditions
or amplitudes interpolated from coarser levels (Fig. 2b).

2. Integrate the plasma and light equations on the fine grid up to the same ending time
as the coarse-level integration performed in the preceding step (Fig. 2d). Since the CFL
stability condition on the fine grid requires a time step smaller than �tc, several fine steps
are usually necessary. These time steps can be taken to be �tc/r initially and then modified
as needed by the evolving fine-grid solution. Notice that this implies that more than r steps
may be needed on the fine grid. Boundary data required during the fine-grid integration steps
are obtained using temporal and spatial interpolation of the coarse-level data (Fig. 2c).

3. After the integrations on the coarse and fine levels, synchronize the solution at the new
common time across the two levels. For the plasma variables, this step involves averaging
and “refluxing” operations to restore conservation (Fig. 2e). For the light amplitude, both
refinement levels are reswept in a coupled fashion (Fig. 2f).

4. Using the synchronized solution, apply the refinement criteria and regrid. If necessary,
the fine level is replaced by a different one, or perhaps eliminated. Data on the new fine level
are initialized using data from the coarse level or the previous fine level. This regridding
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. Steps in the multilevel algorithm.

operation need only be performed periodically, say, after a specified number of coarse-grid
time steps.

The specific details of the integration and synchronization of the plasma model across
multiple refinement levels closely follow the previously well-documented approach for
hyperbolic conservation laws [2, 13, 25]. The primary consideration is the correction of
coarse-grid fluxes to maintain conservation in cells bordering the fine grid. The extension
of the light algorithm (52) is more problematic, however, due to the need to solve linear
systems in the coordinate directions transverse to the propagation direction. We therefore
consider this algorithm component separately in more detail.

4.1. Extension of the Light Algorithm to Locally Refined Grids

In the multilevel integration algorithm described above, two types of light equation
integrations are performed: (i) single-level integrations in which the light sweep (52) is
performed on one refinement level using initial and boundary conditions interpolated from
coarser levels, and (ii) multilevel integrations in which the light is swept across multiple
refinement levels to synchronize the levels. In the following description of these operations,
we again assume that the light is propagating in the positive x direction.

4.1.1. Integration of a Single Refinement Level

Figure 3 illustrates the key steps in the application of the light propagation algorithm on
a single refinement level. For simplicity, we assume that the fine level consists of a single
rectangular grid obtained by refining a portion of the underlying coarse grid by a factor of 2
in each coordinate direction. The procedure generalizes in a straightforward manner to fine
levels obtained by refining a disjoint union of rectangular coarse subgrids by an arbitrary
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(a) (b)

(c) (d)

FIG. 3. An illustration of the key steps in the light propagation algorithm on a single level: (a) initial data at
coarse x-face centers (black circles); (b) interpolation (gray arrows) of coarse data to fine x-face centers (unfilled
circles); (c) interpolation (gray arrows) of coarse data to obtain Dirichlet boundary values (gray circles) for fine-
grid linear system solve (black arrows) for next column of fine x-face data (unfilled circles); (d) solution of linear
system (black arrows) for next column of fine x-face data (unfilled circles) using coarse-grid data (black circles)
as Dirichlet boundary data.

refinement ratio in each coordinate direction. Suppose that amplitudes have been previously
computed at the x-face centers of the coarse grid, indicated by the black circles in Fig. 3a, and
we now want to obtain a more highly resolved solution on the x-faces of the fine grid. The
propagation sweep begins by interpolating coarse data in the transverse direction to obtain
amplitudes at the leftmost x-face centers on the fine grid, as shown in Fig. 3b. The interpo-
lated data (denoted by the unfilled circles) are then used as initial data to sweep the re-
mainder of the fine grid by applying (52). The Dirichlet boundary values needed for
the inversion of the operators A j defined by (53) are interpolated from coarse-grid data
in the x direction as indicated in Fig. 3c. If the fine x-faces coincide with coarse x-faces, then
the coarse data provide boundary values directly without interpolation, as shown in Fig. 3d.
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(a) (b)

(c) (d)

FIG. 4. An illustration of the key steps in the multilevel light propagation algorithm: (a) existing data at coarse
x-face centers (filled circles) and fine x-face centers (unfilled circles); data at next plane of coarse x-face centers
(filled squares); (b) next plane of data at fine x-face centers (unfilled circles) obtained using interpolated coarse
data (gray circles); (c) next plane of data at fine x-face centers (unfilled squares) obtained using coarse data (filled
squares); (d) coarse data (filled circles) and fine data (unfilled circles) after composite synchronization.

4.1.2. Integration of Multiple Refinement Levels

The integration of the discrete light equations on multiple refinement levels is accom-
plished using a multilevel sweep. This sweep proceeds in a recursive manner that involves
single steps of the algorithm described above on each refinement level, combined with
synchronization steps to enforce the multilevel coupling required by the presence of the
transverse Laplacian ∇2

N⊥ in the A j operator of (53). Since this operator is inverted on a
plane of x-faces in the sweep (52), it is natural to perform this synchronization on x-face
planes that are aligned on multiple levels.

To describe the algorithm more concretely, consider a two-level, locally refined grid
such as that shown in Fig. 4. We again assume that the light propagates from left to right,
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FIG. 5. Recursive light propagation (sweep) schedule. The numerals indicate the order of integration of
refinement levels. The vertical arrows denote composite synchronizations.

starting with prescribed incident boundary values on the left boundary. A generic step in the
global sweep proceeds as follows. Suppose that the sweep has so far produced amplitudes at
the coarse-grid-cell x-faces (filled circles) and the fine-grid-cell x-faces (unfilled circles) in
Fig. 4a. Applying a single step of (52) on the coarse grid yields data at the next plane of x-face
edges (filled squares) in Fig. 4a. As in the single-level sweeping algorithm described above,
the coarse data are interpolated to provide boundary values for the subsequent integration of
the fine-grid data up to the same plane as the new coarse-grid data, as indicated in Figs. 4b
and 4c. The coarse data (filled squares) and fine data (unfilled squares) are then updated by a
composite synchronization step to obtain new values (filled and unfilled circles), as depicted
in Fig. 4d. The purpose of the composite synchronization step and the algorithm by which it
is performed are described in detail in the next section. Following the synchronization step,
the updated fine data are interpolated to obtain data at the coarse x-faces covered by the fine
grid (this step is not shown in Fig. 4). This procedure repeats until the entire grid has been
swept. The algorithm generalizes to any number of levels via recursion, as illustrated in
Fig. 5. In this schedule diagram, the numerals indicate the order of integration of refinement
levels. The vertical arrows indicate the composite synchronizations, which occur whenever
a refinement level has been integrated to the same point as the next coarser level.

4.1.3. Composite Synchronization

The composite synchronization step in the algorithm just described enforces compatibility
conditions at coarse–fine boundaries demanded by the presence of the transverse Laplacian
∇2

N⊥ . The use of interpolated coarse-grid data as boundary values for the fine-grid integra-
tion in the multilevel sweeping algorithm establishes the continuity of the amplitude across
coarse–fine boundaries perpendicular to the transverse direction, but it does not yield con-
tinuous normal derivatives there. Consequently, after the fine grid has been integrated to the
same plane as the coarse grid, the transverse derivatives of the coarse and fine grid solutions
will in general disagree at transverse coarse–fine boundaries. A composite synchronization
step is therefore necessary to restore the continuity of the transverse derivatives at coarse–
fine boundaries while maintaining the continuity of the amplitudes. This is accomplished
by adding a correction obtained by solving a linear system involving both the coarse and
fine grids, where the right-hand side represents a residual error due to the discontinuity in
the transverse derivatives.
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At each composite synchronization point of the light sweeping algorithm, we seek the
solution of an equation of the form

(
D − β∇2

N⊥

)
E = R ≡ (

D − β∇2
N⊥

)∗
Eprev (56)

on a locally refined transverse grid hierarchy, where Eprev is the vector of amplitudes com-
puted at the previous face plane. The diagonal matrix D is the composition of the corre-
sponding matrices D j on each level, defined by (55), and the scalar β is the common value
of (54) at the current face plane. The solution of (56) corresponds with the application of
the operator A−1

j in (52). Since the amplitudes E are centered at x-faces of the original grid,
(56) is a cell-centered discretization in the transverse coordinates. The equation (56) can
also be expressed in the divergence form

DE − β∇ · σ = R,
(57)

σ ≡ ∇E,

interpreted in a cell-volume-averaged sense; i.e., the divergence term represents the differ-
ence of the face-centered fluxes σ , and the gradient operator in the definition of σ denotes
the usual first-order differencing of the cell-centered amplitudes E .

The transverse grid hierarchy upon which (56) must be solved is a cross section of the
current grid hierarchy. For simplicity, let us assume that this transverse cross section consists
of just two refinement levels: a coarse grid �c and a fine grid � f . Let P(� f ) denote the
projection of � f into �c, and let � denote the interface between P(� f ) and �c\P(� f ).
The solution of (57) on the composite grid � f ∪ �c\P(� f ) is equivalent to the system

D f E f − β∇ · σ f = R f on � f , (58)

σ f ≡
{

∇E f , at edges not on �,

∇(E f , Ec), at edges on �,
(59)

Dc Ec − β∇ · σc =
{

〈R f 〉, on P(� f ),

Rc + β∇ · J, on �c\P(� f ),
(60)

σc ≡ ∇Ec, (61)

J ≡
{

〈σ f 〉 − σc, on �,

0, elsewhere.
(62)

Here, a subscript f or c denotes the cell-centered value of the corresponding quantity on
the fine or coarse grid, respectively, except for the fluxes σ f and σc, which are defined on
cell faces. The quantity 〈R f 〉 denotes the volume-weighted average of R f on the underlying
coarse grid P(� f ), and similarly 〈σ f 〉 denotes the face-weighted average of σ f on the coarse
faces on �. The quantity ∇(E f , Ec) denotes the gradient on the fine cell faces contained in
�, which depends on both the fine amplitude E f and values interpolated from the coarse
amplitude Ec in �c\P(� f ). The quantity J is the jump between the fluxes on � computed
using the fine and coarse amplitudes. The inclusion of this quantity as in (60) implies that the
amplitude Ec on �c\P(� f ) is decoupled from the value of Ec on P(� f ) and is coupled
instead to the fine-grid amplitude E f through the flux σ f . In other words, the fine-grid
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amplitude provides Neumann boundary conditions for the amplitude on �c\P(� f ), which
in turn provide Dirichlet boundary values for the fine-grid amplitude.

Although we seek the solution of (56), the application of the sweeping algorithm described
in Section 4.1.2 yields a solution of a slightly different problem, due to the fact that the
separate integration of the coarse and fine levels does not preserve the continuity of the
normal derivatives at transverse coarse–fine boundaries. Thus, after the fine grid has been
integrated to the same plane as the coarse grid (e.g., Fig. 4d), we have instead solved the
system

D f Ê f − β∇ · σ̂ f = R f on � f , (63)

σ̂ f ≡
{∇ Ê f , at edges not on �,

∇(Ê f , Êc), at edges on �,
(64)

Dc Êc − β∇ · σ̂c =
{ 〈R f 〉, on P(� f ),

Rc, on �c\P(� f ),
(65)

σ̂c ≡ ∇ Êc. (66)

To obtain the solution of (56), we must therefore add to the prediction (Êc, Ê f ) a com-
posite correction (δEc, δE f ) satisfying the system obtained by subtracting (63)–(66) from
(58)–(62):

D f δE f − β� · δσ f = 0 on � f , (67)

δσ f ≡
{∇δE f , at edges not on �,

∇(δE f , δEc), at edges on �,
(68)

DcδEc − β∇ · δσc =
{

0, on P(� f ),

β∇ · δ J, on �c\P(� f ),
(69)

δσc ≡ ∇δEc, (70)

δ J ≡
{

(〈δσ f 〉 − δσc) + (〈σ̂ f 〉 − σ̂c), on �,

0, elsewhere.
(71)

Assuming homogeneous or periodic boundary conditions, the magnitude of the correction
(δEc, δE f ) obtained by solving (67)–(71) is proportional to the magnitude of the jump
Ĵ ≡ 〈σ̂ f 〉 − σ̂c. We therefore attempt to reduce the correction magnitude by anticipating
this jump using the value Ĵ old from the previous sweep plane in the coarse-grid integration
step. In other words, instead of solving the system (65), (66) on the coarse grid, we solve
the system

Dc Êc − β∇ · σ̂c =
{ 〈R f 〉, on P(� f ),

Rc + β∇ · Ĵ old , on �c\P(� f ),
(72)

σ̂c ≡ ∇ Êc. (73)
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The composite correction is then the solution of (67)–(71), where instead of (71) we have

δ J ≡
{

(〈δσ f 〉 − δσ c) + Ĵ − Ĵ old, on �,

0, elsewhere.
(74)

For a sufficiently slowly varying solution, the correction resulting from the modified jump
Ĵ − Ĵ old will be smaller than that due to Ĵ . In steady state, the correction will be zero.

To solve the composite system defined by (67)–(70) and (74), we employ a fast adaptive
composite (FAC) algorithm [17]. FAC utilizes an iterative procedure to combine solutions
of linear systems on individual refinement levels. These “level solves” are easier to perform
than the full composite system, since the mesh size is uniform on each refinement level
and the stencil nonuniformities at the coarse–fine boundaries only affect the enforcement
of boundary values. In two spatial dimensions, we use a tridiagonal solver to perform
the transverse one-dimensional level solves; for three-dimensional problems, a multigrid
algorithm is used for the corresponding two-dimensional transverse level solves.

4.1.4. Interpolation and Averaging

The light propagation algorithm involves a number of interpolation and averaging oper-
ations to transfer data between coarse and fine grids. For example, in the integration of a
single refinement level, the sweep is initialized using data from the next coarser level inter-
polated in the transverse direction (i.e., the step depicted in Fig. 3b). Averaging of fine data
in the transverse direction to obtain coarse data to initialize the subsequent coarse grid step
is required after the composite synchronization step in the multilevel integration algorithm.
In both the single- and multilevel algorithms, coarse-grid amplitudes are interpolated in the
propagation direction to obtain boundary values for the inversion of the transverse linear
operators. In this section, we discuss these issues in more detail.

To interpolate complex amplitudes in the transverse direction, we employ an algorithm
in which the amplitudes are first linearly interpolated, then scaled by a real-valued factor so
that the squared moduli of the resulting fine-grid amplitudes are equal to those obtained by
a conservative linear interpolation of the coarse-grid squared moduli. The motivation for
this approach is to conserve energy locally with a higher degree of approximation than that
obtained by constant interpolation. To describe the explicit formulas in the case of a one-
dimensional transverse coordinate, suppose that we want to interpolate coarse amplitudes
Ec,i to obtain fine amplitudes E f, j on the next finer level, which has been refined by a
factor of r . Assuming that each coarse grid cell i is refined into r fine grid cells, indexed by
j = ri, . . . , r(i + 1) − 1, the fine grid amplitudes are obtained as

E f, j = e j Ẽ f, j

|Ẽ f, j |
, (75)

where

Ẽ f, j ≡
{

−τ j Ec,i−1 + (τ j + 1)Ec,i , for j = ri, . . . , ri + r/2 − 1,

(1 − τ j )Ec,i + τ j Ec,i+1, for j = ri + r/2, . . . , r(i + 1) − 1,
(76)

e2
j ≡ |Ec,i |2 + s jτ j , (77)

τ j ≡ 1

2r
+ 1

r
( j − ri) − 1

2
, (78)
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and the slopes s j are given by

s j ≡ dminmod(|Ec,i+1|2 − |Ec,i |2, |Ec,i |2 − |Ec,i−1|2), (79)

with the double minmod function defined by (42).
To average fine-grid amplitudes to coarse amplitudes in the transverse direction, we

employ

Ec,i = ei Ẽc,i

|Ẽc,i |
, (80)

where

Ẽc,i ≡ 1

r

r−1∑
j=0

E f,ri+ j , (81)

e2
i ≡ 1

r

r−1∑
j=0

|E f,ri+ j |2. (82)

The above interpolation and averaging formulas are extended to two transverse dimensions
using tensor products.

To obtain boundary values for the fine-grid linear solves (e.g., Fig. 3c), we use an in-
terpolation formula similar to (75)–(78) that is applied in the propagation direction. Since
energy conservation is not required by this interpolation step, we employ the simpler slope
formulas

s j ≡
{ |Ec,i |2 − |Ec,i−1|2, for j = ri, . . . , ri + r/2 − 1,

|Ec,i+1|2 − |Ec,i |2, for j = ri + r/2, . . . , r(i + 1) − 1,
(83)

corresponding to linear interpolation of the coarse-grid squared moduli. This choice is
compatible with the Crank–Nicholson discretization of (32), which assumes a linear x
variation of the amplitude between x-faces. To demonstrate this more concretely, suppose
that Eλ

j−1/2 is an eigenvector corresponding to an eigenvalue λ of the transverse operator

1

2kη0
j

∇2
⊥ + k diag

{
η j,m − η0

j

}
. (84)

Assume that η varies slowly in the propagation direction x so that it can be regarded as
constant over two consecutive cells in x ; that is, η j,m = η j+1,m for each m, and hence,
η0

j = η0
j+1. The Crank–Nicholson algorithm applied over the �x step between the cell

edges j − 1/2 and j + 1/2 yields

Eλ
j+1/2 = 2 + �xλi

2 − �xλi
Eλ

j−1/2. (85)

Thus, the eigenvector Eλ
j−1/2 is multiplied by a factor that preserves its modulus (and hence

energy) and changes its phase by the angle

θ ≡ tan−1 4λ�x

4 − λ2�x2
= λ�x + O(λ3�x3) as λ�x → 0. (86)
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The leading order term λ�x is the exact phase change that would have resulted from
integrating (32) discretized only in the transverse direction. The higher order terms therefore
represent the Crank–Nicholson error. Now suppose that we had instead employed Crank–
Nicholson over two cells and linearly interpolated the resulting amplitude to approximate
Eλ

j+1/2 (analogous to the interpolation of coarse-grid amplitudes to obtain boundary values
for the fine-grid integration). We have

1

2

(
Eλ

j−1/2 + Eλ
j+3/2

) = 1

2

(
1 + 1 + λ�xi

1 − λ�xi

)
Eλ

j−1/2 = 1

1 − λ�xi
Eλ

j−1/2. (87)

In this case, the eigenvector Eλ
i−1/2 is multiplied by a quantity that changes its phase by the

angle

θ̃ ≡ tan−1 λ�x = λ�x + O(λ3�x3) as λ�x → 0, (88)

which agrees with the phase angle (86) up to the asymptotic order of the error in the Crank–
Nicholson discretization. From (87) we also observe that the modulus of the interpolated
amplitude differs from that of (85) by a quantity of orderλ2�x2. This difference is eliminated
by scaling (87) to have the modulus square obtained by linearly interpolating |Eλ

j−1/2|2 and
|Eλ

j+3/2|2.
The fact that the transverse interpolation and averaging algorithms locally conserve en-

ergy, together with the fact that single steps of the Crank–Nicholson algorithm conserve
energy globally (in the transverse dimension), implies that the multilevel light-propagation
algorithm conserves energy if the grid hierarchy is refined only in the transverse dimension.
In fact, energy conservation to machine-precision accuracy is obtained, provided that the
iterative methods used to solve the transverse linear systems are also converged to this preci-
sion. On the other hand, strict conservation of energy is not guaranteed if the grid hierarchy
contains a level that has been refined in the propagation direction or if the transverse linear
systems are only solved approximately.

4.2. Refinement Criteria

Appropriate refinement criteria are important for an effective AMR algorithm. Never-
theless, we do not consider this issue in this paper, leaving it for future work. Instead,
heuristic criteria that work well, but not optimally, and that can be easily formulated are
adopted here. The criteria used in the numerical examples of the next section are based on
values of the light intensity and/or the gradients of the electron number density and the light
intensity.

Heuristic conditions must be tuned to minimize the effects of introducing artificial re-
finement boundaries in the solution domain, although this process is imperfect. Of concern
is the introduction of numerical inaccuracies such as reflections from fine/coarse-grid in-
terfaces or, in underrefined regions, numerical solutions irrevocably corrupted by artificial
numerical dispersion and/or dissipation. In fact, the Crank–Nicholson scheme used in the
paraxial light algorithm suffers from significant phase errors in regions where the grid is
too coarse. Thus, our heuristic criteria for this paper have been designed to be forgiving if
not efficient.

A choice of refinement criteria better suited to dealing with numerical inaccuracies is
based on local error estimation. Such criteria are more difficult to devise and implement,
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but they are more robust in detecting numerical errors. We are currently implementing an
error-based criterion that uses Richardson extrapolation and in future work, we will analyze
this and other heuristic criteria to identify those best suited to LPI problems of interest.

5. NUMERICAL RESULTS

The algorithm described in the preceding sections has been implemented in a research
code named ALPS (Adaptive Laser Plasma Simulator). ALPS is built upon the SAM-
RAI (Structured Adaptive Mesh Refinement Applications Infrastructure) system [16], a
C++ class library that supports the development of structured AMR application codes.
Parallelization is implemented using the Message Passing Interface (MPI) [12] through
SAMRAI. ALPS can be compiled as a spatially two-dimensional or three-dimensional
executable.

To demonstrate the efficacy of our algorithm as implemented in ALPS, we present three
example calculations. The first result is a convergence study on a crossed plane wave
problem that establishes a second-order convergence rate in all variables for the uniform grid
discretization. A two-dimensional filamentation problem is presented to demonstrate speed-
up and memory savings by comparing calculations obtained with both a uniform grid and
an adaptively refined mesh. Finally, results are reported for a calculation of crossed beams
in a plasma flow that highlight the utility of AMR for problems requiring the simulation
of a large hydrodynamic region in which the main LPI subregion of interest is relatively
small.

The last two test cases have been selected as representative of the types of LPI prob-
lems for which AMR may be useful. In many theoretical and experimental studies of LPI
mechanisms, the background plasma flows are relatively smooth, and the regions of high
laser intensity variation occur in only a small fraction of the computational domain. We
therefore have adopted heuristic refinement criteria that follow areas of high laser intensity,
noting that, as with any finite difference algorithm, insufficient resolution of the light field
can lead to significant numerical phase errors. Problems with high variation over a large
fraction of the computational domain, for example due to large numbers of beams, highly
filamented beams, or complicated background flows, clearly will not benefit as much from
AMR because the computational savings will be offset by the AMR overhead.

5.1. Rate of Convergence

One of the design goals for the discretizations formulated in Section 3 was to achieve
second-order temporal and spatial accuracy on a uniform grid. We indeed observe such
convergence rates for the plasma and light algorithms tested separately. To verify that a
near second-order rate is maintained when the plasma and light equations are integrated
using the operator split approach described earlier, we evaluate the convergence of the
coupled system on the following test problem.

Consider a physical domain defined by the rectangle 0 ≤ x1 ≤ X1, 0 ≤ x2 ≤ X2, where
X2 = 21.225 µm and X1 = 2X2. The domain is filled with a C5H12 plasma whose initial
density is 1/10 of the critical density for the wavelength λ = 0.351 µm. The initial velocities
are zero, and the initial ion and electron temperatures are 1 keV and 3 keV, respectively. No-
flow boundary conditions are prescribed at the boundaries in the x1 direction, with periodic
boundary conditions in the x2 direction.
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TABLE I

L1 Norm of the Differences between the Solution Computed with N = 1024 and

Coarser Calculations at N = 128, 256, and 512

Relative error in the L1 norm

N Intensity Density Pressure x1-Velocity x2-Velocity

128 1.52e-01 2.94e-02 4.74e-02 6.49e-01 4.01e-01
256 7.87e-02 1.25e-02 2.05e-02 2.21e-01 1.72e-01
512 1.42e-02 3.06e-03 5.04e-03 4.96e-02 4.17e-02

The incident light amplitude (time-harmonically enveloped with respect to the frequency
ω0 = 2πc/λ) on the left boundary is

E(t, x2) ≡ E1(t)e
−i(ωδ t+kx2) + E2ei(ωδ t+kx2), t ≥ 0, 0 ≤ x2 ≤ X2, (89)

where ωδ = 8.333 × 1011 rad/s and k = 10π/X2. The plane wave magnitudes are

E1(t) ≡



(α I1)
1/2

[
1 −

(
1 − t2

t2
ramp

)2]
, for t ≤ tramp,

(α I1)
1/2 for t > tramp,

E2 ≡ (α I2)
1/2,

(90)

where I1 ≡ 1016 W/cm2, I2 ≡ 1012 W/cm2, tramp ≡ 7 ps, and α ≡ 2 × 104/cε0. For any
time t , the prescribed amplitude (89) defines the initial values for light sweeps in the positive
x1 direction, with periodic boundary conditions imposed in the x2 direction. The interaction
of the two plane waves emanating from (89) results in a beat wave that couples to a plasma
acoustic wave. In fact, this particular choice of parameters establishes a resonance that
transfers energy from the higher frequency plane wave to the lower frequency wave.

The coupled plasma and light system is integrated to a final time of 50 ps on uniform grids
of size 2N × N , where N = 128, 256, 512, and 1024. To estimate the rate of convergence,
we regard the solution with N = 1024 as the exact solution, and we compute the L1 norm
difference between this solution and the other three approximate solutions, normalized by
the L1 norm of the N = 1024 “exact” solution. The relative errors obtained in this manner
are displayed in Table I, which shows that the integration of the coupled system is achieving
a near second-order convergence rate in all variables.

5.2. AMR Efficiency

We next present a two-dimensional example of the saving of computational resources
obtainable from AMR. It should be noted that the maximum potential gains are not fully
demonstrated by this problem, since even larger savings are attainable in three dimensions.
However, to avoid mixing the issues of AMR speedup and parallel speedup, we are limited
by the uniform-grid problem size that we can reasonably run on a single processor.

In this problem, a laser beam is propagated through a uniform, stationary CH plasma
filling a 600 µm by 480 µm rectangular domain. The laser, of wavelength 1.06 µm, has a
prescribed beam amplitude with a cosine-squared variation over a 40-µm-wide spot centered
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FIG. 6. A sequence of intensity plots at various times in the simulation. The white boxes indicate the adaptively
refined mesh, and the color scale is the same for all images.

on the left-hand side of the domain. The light source is linearly ramped from a zero initial
intensity to a peak intensity of 2 × 1015 W/cm2 at 50 ps, after which it remains constant. The
initial plasma number density is 9.92 × 1019 cm−3, 1/10 the critical density for the imposed
laser light. The initial ion and electron temperatures are 0.5 keV and 1 keV, respectively.

Several light intensity plots from an adaptive simulations are presented in Fig. 6. This
computation was run with an initial grid of 512 × 512 cells covering the entire spatial do-
main, and an additional refinement level was introduced adaptively where the light intensity
exceeded 1.1 × 1012 W/cm2. The refined level, indicated by the white boxes, is four times
finer than the initial coarse grid in each coordinate direction, and regridding was performed
every two coarse-grid time steps.

As the input laser intensity increased, a rectangular domain of refined cells was auto-
matically added around the beam; note that the refinement threshold cannot be discerned
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TABLE II

Comparison of CPU Times between the 512 × 512 Adaptive Simulation

and the Equivalent Uniform Fine-Grid Calculation

CPU hours

Adaptive Uniform Speedup

Laser integrator 2.005 3.403 1.70
Plasma integrator 8.446 29.400 3.48
Other 0.054 0.167 3.09
Total run time 10.505 32.970 3.14

because of the color scale required to identify the many orders of magnitude. Due to the
ponderomotive force pushing plasma out of the beam, the light focused, eventually leading
to the formation of a “hot spot” that caused filamentation and spreading of the beam. The
refined level adapted to capture this spreading.

To make a quantitative assessment of the benefits of AMR, it is necessary to consider
both the time and memory savings. In Table II CPU timing data are presented for both the
512 × 512 adaptive simulation and an equivalent uniform fine-grid calculation of 2048 ×
2048 cells on a single processor of a Compaq AlphaServer 8400. The total speedup for
the adaptive computation is 3.14. Breaking down the total time, it is clear that the plasma
system integration dominates the computational cost but that it also scales very well with
mesh refinement because the adaptive simulation uses on average roughly one-third the
number of computational cells. Conversely, the light algorithm does not scale as well, but
the current implementation of the light algorithm has not been optimally implemented in
the SAMRAI framework.

The evolution of the number of cells in the adaptive simulation relative to the number
of cells in an equivalent uniform fine grid is plotted as the solid line in Fig. 7. Assuming a
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FIG. 7. Evolution of the number of cells at each time step for the 512 × 512, 100 ps adaptive simulation
relative to the number of cells in an equivalent uniform fine grid of 2048 × 2048 cells. The number of cells
approximates the memory usage during the adaptive run relative to that for an equivalent uniform fine grid.
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constant amount of memory per cell, this is equivalent to a measure of the relative memory
usage of the adaptive simulation. The simulation begins with 6% of the equivalent uniform
fine-grid cells and ends at approximately 45%, verifying that AMR yields a substantial
memory savings provided that the solution exhibits sufficiently local features. The variation
in the number of cells between time steps 35 and 50 corresponds to mesh adjustments due
to the focusing and subsequent spreading of the laser beam.

5.3. Crossed Beams in an Expanding Plasma

Finally, we present results for a problem in which two laser beams cross in an expanding
plasma, representing an idealization of a physical experiment in which a foil is exploded
by a separate heater beam in the vicinity of the crossing beams. We model the initial
conditions as an isothermal, quasineutral CH plasma freely expanding in the x2-direction
in a computational domain of size 640 by 500 µm. The initial number density and velocity
distributions are given by

n(x2)

n0
= exp

(
− x2

L

)
,

(91)
u(x2)

cs
=

(
0, 1 + x2

L

)T

,

such that, on the vertical centerline (x2 = 0), the plasma velocity is the ion acoustic velocity
cs and the number density is n0 = 9.92 × 1019 cm−3 (0.1nc). The number density at the
top of the domain (x2 = 250 µm) is half the centerline density, which fixes the length scale
L = 250/ ln(2) µm. The initial ion and electron temperatures are 0.5 and 1 keV, respectively.

Two 1.06-µm-wavelength laser beams instantaneously enter through the left boundary at
the initial time. Each beam has a cosine-squared amplitude variation over a 40-µm-wide spot
and a maximum intensity of 5.1 × 1014 W/cm2. The beams are centered at x2 = ±80 µm
and initially propagate at angles ∓15.7◦ to the horizontal so as to intersect, in the absence
of plasma, at the center of the domain.

Since little happens outside the immediate neighborhoods of the beams, the lowest level
grid is very coarse at 256 × 160 cells. An additional level of refinement by a factor of 8 is
initially imposed to provide resolution sufficient to propagate the beams in the correct direc-
tions. Subsequently, this level adaptively refines on intensity levels above 5 × 1012 W/cm2,
and a second level of refinement by a factor of 2 resolves regions where either the intensity
exceeds 1014 W/cm2 or intensity gradients exceed 1019 W/cm3.

The adaptively computed light intensity is plotted in Fig. 8, where red denotes the highest
intensity and blue the lowest. The white boxes indicate the first refined level and the green
boxes indicate the second and finest level. Two major effects are present. First, since light
will refract due to gradients in the plasma density, both beams can be seen to deflect upward
in the direction of lower plasma density. Second, a “grating” is produced in the overlap
region where a resonant coupling exists between the beat wave and an ion acoustic wave
(see, e.g., [10, 21, 28]). This resonance results in a transfer of energy between the beams,
as seen in Fig. 8 where the beam traveling from the lower left to the upper right obtains a
much higher intensity. The ability to use local mesh refinement to sufficiently resolve the
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FIG. 8. Adaptive calculation of light intensity for crossed beams in an expanding plasma. The white boxes
indicate the first refined level and the green boxes indicate the second and finest level.

overlap region is important to ensure that the resonance is not detuned by dissipation in the
numerical scheme.

The memory efficiency of the adaptive algorithm is demonstrated by the data in Table III.
The area covered by the first level of refinement actually decreases from its initial specifi-
cation, with an average coverage of approximately one-third of the domain. The finest grid
covers on average 12.69%, and the total number of cells, relative to the total number of cells
in an equivalent uniform fine grid, is on average 21.76%.

TABLE III

The Average Area Covered by Each Refinement Level and

the Total Number of Cells N, Expressed as a Percentage of the

Number of Cells in an Equivalent Uniform Fine Grid, Nu

Area coverage (%)

Level 1 Level 2 N/Nu (%)

First step 49.86 13.13 25.99
Last step 36.94 12.51 22.13
Maximum 49.86 14.42 27.27
Minimum 31.90 11.78 20.62
Average 34.72 12.69 21.76
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6. CONCLUSION

We have presented an approach for incorporating AMR into the simulation of laser
plasma filamentation. AMR is most appropriate for problems with distinct scale separation,
such as problems that are “hydrodynamically large,” where the regions of plasma flow that
can be resolved with a relatively coarse grid are substantially larger than the LPI regions
requiring finer grid resolution. The use of locally refined grids results in significantly reduced
execution times and memory utilization. More importantly, given fixed computational re-
sources, the use of AMR enables the consideration of larger problems than could be handled
otherwise.

AMR necessarily introduces significant additional complexity in the integration algorithm
and the associated code implementation. In particular, the discretizations of the plasma fluid
and light models must accommodate essential matching conditions at the interfaces between
coarse and fine grids. For the plasma model, which we discretized using a high-resolution
Godunov method, we achieved this by enforcing the flux continuity that naturally results
from the conservative formulation of the fluid equations. In the paraxial light discretization,
we introduced some specialized interpolation and composite synchronization steps to match
solutions at coarse–fine boundaries. The latter was formulated in the context of a Crank–
Nicholson finite difference discretization of the paraxial wave model, since the use of locally
refined grids inhibits the direct use of fast transform methods that can be employed on
uniform grids [4]. Since a linear system solve replaces FFTs in our implicit finite difference
approach, an efficient solver that can accommodate the coupling of multiple refinement
levels is essential.

Some important issues remain for future investigation. Refinement criteria based on es-
timates of the error in the approximate solutions would be a significant improvement over
heuristic criteria that rely on a priori knowledge of the solution characteristics. The ap-
proach we have taken here for pure filamentation problems could in principle be extended
to LPI problems involving parametric instabilities such as stimulated Brillouin and Raman
scattering by the inclusion of additional paraxial backscattered light and acoustic wave
models following the strategy employed in [5]. Acoustic wave damping is an important
physical effect in LPI problems that is challenging to implement on nonuniform grids due
to the nonlocal character of configuration space formulations. Landau damping models are
obtained by considering additional moments of the Vlasov equation beyond those yielding
the fluid model considered here. Since the closure rules proposed to date have been formu-
lated in Fourier space [15], the configuration space representations involve a convolution
integral that would be expensive to treat directly. On the other hand, as with the paraxial
wave equation solution algorithm, the use of locally refined grids inhibits the use of fast
transform methods to apply the damping operator in Fourier space. We are continuing to
investigate these and other issues.
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